IPCC scenarios, integrated assessment models and key concepts for integrating climate change research across research domains

Volker Krey

Material in part courtesy of Keywan Riahi

ICEMF webinar, 3 August 2023

Overview

- A Brief History of (IPCC) Scenarios
- The "New Scenarios Process"
- Representative Concentration Pathways (RCPs)
- Shared Socioeconomic Pathways (SSPs)
- CMIP6/ScenarioMIP
- Equity and Fairness in Scenarios
- SSP Updates

A Brief History of (IPCC) Scenarios

IPCC: Climate Change Scenarios

Projections

What can happen?

- Socioeconomic projection
- Emissions, concentration crimate forcing projections
- Climate change in jections
- Climate input: projections
- Integrated projections

Pathways

What should happen? How to reach certain goals?

• Mingation pathways

- Adaptatio nathways
- Climate-rectine / development pathways
- Integrated (transformer ib), pathways
- Sustainable development p the ave

Used as a set

- Baseline and policy scenario pairs
- Multiple pathways to a single goal
- Set of pathways to different goals
- Range of projections spanning possible futures

Source: Elmar Kriegler, SENSES project

History of (IPCC) scenarios (1896-2009)

Scenario development	1969 Coupled ocean-atmosphere GCM ⁶³ 1967 Modelled estimates of climate sensitivity ⁶²	1970s used 1 natura sustai	Scenarios to explore al resource nability ^{23–26} 1980s So become mainstre futures research	cenarios am in 27-29	1988 GCM simulations time-depen (transient) s indicate the anthropoge warming wo emerge fror variability ^{ex}	using dent scenarios e signal of nic climate 1990 IPCC ould soon SA90 m natural emissions scenarios ³⁶	1992 II scenar	PCC IS92 ios ³⁰	1995 Scenario generator for non-specialists ⁷¹ 1995 Comparison of global vegetation	1998 Emiss scena datab publis	2000 Pattern scaling of IS92- based climate projections to emulate SRES ⁷⁶ ions rios ase hed ⁷⁴	2001 Comprehensive multi-model assessment of mitigation scenarios ⁷⁷	2004 Regional projections of seasonal temperature and precipitation based on SRES ⁷⁹ 2005 Scenarios and model comparison of mitigation	2007 IPCC 'new scenarios' expert meeting ³ and model comparison of economic and technological pathways to stabilize radiative forcing at several levels ⁴⁸	2009 RCPs released, starting 'parallel phase' of new scenario process
Notable applications						1990 IPCC First Assessment Report uses analogue and equilibrium climate scenarios for impact assessment	1991 Impact studies published based on transient climate scenarios ^{66, 69}	1994 IPCC impact assessment guidelines ⁷⁰	model results using equilibrium GCM 2 × CO ₂ ⁷² 1995 IPCC Second Assessment Report uses equilibrium climate scenarios in	96 Country Idies of pacts ⁷³	1998 IPCC regional impacts assessment (using IS92) ⁷⁵ 1999 SRES, no climate policies included ³²	2001 IPCC Third Assessment Report impact results using IS92 scenarios 2001 Socio- economic 'vulnerability' scenarios ⁷⁸	options for non- CO ₂ GHGs ⁸⁰ 2005 Millennium Ecosystem Assessment	2007 IPCC Fourth Assessment Report uses SRES and IS92 scenarios for impacts	2009 UK probabilistic national climate projections ⁸¹ and extension of methodology for probabilistic climate projections ⁸²
Context/institutional development	1896 Arrhenius' estimates CO ₂ - induced warming ⁶⁴ 1960 Keeling shows atmospheric CO ₂ is increasing ⁶⁵		1980 World Climate Research Program established	1983 Villach Conference reviews agricultural and ecosystem impacts with scenarios ⁶⁷	1985 Second Villach Conference estimates mid 21st century rise of global mean temperature greater than any in human history ⁶⁸	1988 IPCC established			impact report					2007 IAMC founded	2009 World Climate Conference 3 discusses development of capacity to respond to the needs of users of climate information worldwide.

History of (IPCC) scenarios (1896-1994)

Scenario development	1969 Coupled ocean–atmosphere GCM ⁶³ 1967 Modelled estimates of climate sensitivity ⁶²	1970s Sca used to ex natural res sustainab	enarios explore source bility ^{23–26} 1980s Scena become mainstream futures research ^{27–2}	arios in 29	1988 GCM simulations time-depend (transient) s indicate the anthropoge warming wo emerge from variability ⁶⁶	using dent cenarios signal of nic climate 1990 IPCC suld soon SA90 n natural emissions scenarios ³⁶	1992 IP scenario	CC IS92 ₂₅ ³⁰
Notable applications						1990 IPCC First Assessment Report uses analogue and equilibrium climate scenarios for impact assessment	1991 Impact studies published based on transient climate scenarios ^{66, 69}	1994 IPCC impact assessment guidelines ⁷⁰
Context/institutional development	1896 Arrhenius' estimates CO ₂ - induced warming ⁶⁴ 1960 Keeling shows atmospheric CO ₂ is increasing ⁶⁵	19 Cl Re Pr es	980 World limate esearch rogram stablished	1983 Villach Conference reviews agricultural and ecosystem impacts with scenarios ⁶⁷	1985 Second Villach Conference estimates mid 21st century rise of global mean temperature greater than any in human history ⁶⁸	1988 IPCC established		

History of (IPCC) scenarios (1995-2009)

1995 Scenario generator for non-specialists ⁷¹ 1995 Comparison of global vegetation	1 1998 Emiss scena datab publis	2000 Pattern scaling of IS92- based climate projections to emulate SRES ⁷⁶ sions arios base shed ⁷⁴	2001 Comprehensive multi-model assessment of mitigation scenarios ⁷⁷	200 pro sea tem pre on	4 Regional jections of sonal operature and cipitation based SRES ⁷⁹ 2005 Scenarios and model comparison of mitigation	2007 IPCC 'new scenarios' expert meeting ³ and model comparison of economic and technological pathways to stabilize radiative forcing at several levels ⁴⁸	2009 RCPs released, starting 'parallel phase' of new scenario process
model results using equilibrium GCM $2 \times CO_2^{72}$ 1995 IPCC Second Assessment Report uses equilibrium climate scenarios in	1996 Country studies of impacts ⁷³	1998 IPCC regional impacts assessment (using IS92) ⁷⁵ 1999 SRES, no climate policies included ³²	2001 IPCC Third Assessment Report impact results using IS92 scenarios 2001 Socio- economic 'vulnerability' scenarios ⁷⁸		options for non- CO ₂ GHGs ⁸⁰ 2005 Millennium Ecosystem Assessment	2007 IPCC Fourth Assessment Report uses SRES and IS92 scenarios for impacts	2009 UK probabilistic national climate projections ⁸¹ and extension of methodology for probabilistic climate projections ⁸²
impact report						2007 IAMC founded	2009 World Climate Conference 3 discusses development of capacity to respond to the needs of users of climate information worldwide.

Scenarios in IPCC

A clarification

- last official "IPCC scenarios" were published in 2000 as part of the Special Report on Emissions Scenarios (SRES)
- since then, IPCC has only assessed scenarios that were published in the (peer-reviewed) literature

The "New Scenarios Process"

Introduction: Reasons for "new" scenarios

-1.0

1900

2100

20

2000

post-SRES (min)

Year

Scenarios for GHG emissions from 2000 to 2100 (in the absence of additional climate policies) and projections of surface temperatures 200 6.0 post-SRES (max) post-SRES range (80%) 180 Global GHG emissions (GtCO2-eq / yr) B1 A1T 5.0 160 Global surface warming (°C) B2 A1B 140 4.0 A2 A1FI 120 3.0 Year 2000 constant 100 concentrations 20th century 2.0 80 1.0 60 40 0

2000

Year

Source: IPCC AR4 (2007)

A1B A2 A1F

B1 A11

2100

Reasons for "new" scenarios

Four important reasons to develop new community scenarios for climate assessment:

- 1. Need to cover a wider range of GHG concentrations (SRES only included baseline scenarios)
- 2. Need for a wider set of parameters (Climate models have become more complex; higher information need)
- 3. Need for scenarios that cover mitigation & adaptation issues (need for more collaboration between "WGs")
- 4. Use more recent insight into trends in scenario drivers (update)

Sequential vs. Parallel Process

Process Sequential Process arallel

The Parallel Process

Socio-economic

pathways

Emissions drivers, mitigative capacity

Exposure, sensitivity, adaptive capacity

Source: O'Neill & Schweizer 2011

Representative Concentration Pathways (RCPs)

RCP workflow

IAM Models Preparing the RCPs

Model	Home Institution	
AIM Asia Integrated Model	National Institutes for Environmental Studies, Tsukuba Japan	
Global Change Assessment Model	Joint Global Change Research Institute, PNNL, College Park, MD	
IMAGE The Integrated Model to Assess the Global Environment	PBL Netherlands Environmental Assessment Agency, Bildhoven, The Netherlands	
MESSAGE Model for Energy Supply Strategy Alternatives and their General Environmental Impact	International Institute for Applied Systems Analysis; Laxenburg, Austria	International Institute for Applied Systems Analysis

RCPs were run by climate models and assessed in AR5

Source: van Vuuren et al. 2011; Jones et al. 2013

iocc

CLIMATE CHANGE 2014

iocc

iocc

Shared Socioeconomic Pathways (SSPs)

The Scenario Matrix Architecture

mitigation	 SSP5: Fossil fueled development Rapid growth, free trade High technology development, Environment and social goals not a priority: adaptive, technology-fix Focus on economic growth 	Markets first	Clash of civilisations	 SSP3: Regional rivalry Competition among regions Low technology development Environment and social goals not a priority Focus on domestic resources High population growth Slow economic growth dev. countries
Challenge to	 SSP1:Sustainability Global cooperation Rapid technology dev. Strong env. policy Low population growth Low inequity Focus on renewables and efficiency Dietary shifts Forest protection 	Middle of	f the Road	 SSP4: Inequality Inequality across and within regions Low technology development Environment priority for those that can afford Limited trade
	(Challenge	e to adap	tation

SSP Quantifications

SSP interpretations by IAMs

IASA

Basic Elements and IAM Scenarios for the SSPs (GEC, 2017)

Community-wide effort

- Demographers ullet
- Economists
- Impact & Vulnerability •
- **Integrated Assessment** • Modellers

The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview

Keywan Riahi^{a,*}, Detlef P. van Vuuren^b, Elmar Kriegler^c, Jae Edmonds^d, Brian C. O'Neill^e, Shinichiro Fujimori^f, Nico Bauer^c, Katherine Calvin^d, Rob Dellink^g, Oliver Fricko^a, Wolfgang Lutz^a, Alexander Popp^c, Jesus Crespo Cuaresma^a, Samir KC^{a,h}, Marian Leimbach^c, Leiwen Jiang^e, Tom Kram^b, Shilpa Rao^a, Johannes Emmerling^{i,j}, Kristie Ebi^k, Tomoko Hasegawa^f, Petr Havlik^a, Florian Humpenöder^c, Lara Aleluia Da Silva^{i,j}, Steve Smith^d, Elke Stehfest^b, Valentina Bosetti^{i,j,l}, Jiyong Eom^{d,m}, David Gernaat^b, Toshihiko Masui^f, Joeri Rogelj^a, Jessica Strefler^c, Laurent Drouet^{i,j}, Volker Krey^a, Gunnar Luderer^c, Mathijs Harmsen^b, Kiyoshi Takahashi^f, Lavinia Baumstark^c, Jonathan C. Doelman^b, Mikiko Kainuma^f, Zbigniew Klimont^a, Giacomo Marangoni^{i,j}, Hermann Lotze-Campen^{c,p}, Michael Obersteiner^a, Andrzej Tabeauⁿ, Massimo Tavoni^{i,j,o}

Global Environmental Change Special Issue

- Overview (Riahi et al. 2017) ullet
- Demographic projections (KC & Lutz 2017) •
- GDP projections (OECD, IIASA, PIK 2017) ullet
- Urbanisation projections (Liang & O'Neill 2017) ۲
- Quantifications of SSPs (6 global IAM teams) •
- Cross-cutting papers on energy, land and air pollution •

Economic & Demographic Change: five SSPs

Sources: Overview: Riahi et al, 2017, GDP: Dellink et al, 2017; Urbanization: Jiang and O'Neill et al, 2017, Population: KC and Lutz, 2017

Reference SSP (IAM) Scenarios (no climate policy beyond those in place before 2015)

- Six IAM teams
- Five SSPs
- One representative Marker Scenario for each SSP
- For each SSP there are multiple IAM runs depicting uncertainty ranges

Energy – SSP Reference Cases

Two marker scenarios where mitigation is relatively easy

- Transition away from coal/oil
- Low demand

- High share of poor with low emissions
- Low/intermediate demand
- Technology available to the "elite"

Energy – SSP Reference Cases

Two marker scenarios where mitigation is relatively difficult

- Coal-intensive development
- Very high demand

- Fossil-intensive
- High poverty
- Slow technological change
- Strong fragmentation

Energy – SSP Reference Cases

A central marker scenario with intermediate mitigation challenges

- Balanced technology
- Intermediate demand

How were these pathways created?

Storylines Qualitative assumptions SSP5: Fossil fueled Table A.1: Qualitative assumptions for energy demand across SSPs development Rapid growth, free trade High technology development, Environment and social goals not a priority: adaptive, technology-fix Focus on economic growth SSP1:Sustainability Global cooperation Rapid technology dev. Strong env. policy Low population growth Low inequity Focus on renewables and efficiency Dietary shifts Forest protection Quantitative assumptions IAM - REGION 17.8658 117.8658 117.8658 117.8658 117.8658 117.8658 117.8658 117.8658 3.69637 13.69637 13.69637 13.69637 13.69637 13.69637 13.69637 13.69637 1 07591 11 07591 11 07591 11 07591 11 07591 11 07591 11 07591 11 0759 52695 99.52695 99.52695 99.52695 99.52695 99.52695 99.52695 99.5269 5 0505 105 0505 105 0605 105 0605 105 0605 105 0605 105 0605 105 060 0 47305 50 47305 50 47305 50 47305 50 47305 50 47305 50 47305 50 4730 9.50295 59.50295 59.50295 59.50295 59.50295 59.50295 59.50295 59.5029 07.529 4007.529 4007.529 4007.529 4007.529 4007.529 4007.529 4007.529 4.886 2894.886 2894.886 2894.886 2894.886 2894.886 2894.886 2894.886 2894.886 498.782 2498.782 2498.782 2498.782 2498.782 2498.782 2498.782 2498.782 517 292 2517 292 2517 292 2517 292 2517 292 2517 292 2517 292 2517 292 2517 29 1213 256 1213 256 1213 256 1213 256 1213 256 1213 256 1213 256 1213 256 1213 256 547.214 1547.214 1547.214 1547.214 1547.214 1547.214 1547.214 1547.214 **Modeling Team** 152,593 1152,593 1152,593 1152,593 1152,593 1152,593 1152,593 1152,593

	SSP 1	SSP 2	SSP 3	SSP 4	SSP 5
			Country Income Groupings	5	
SSP Element	Low Med High	Low Med High	Low Med High	Low Med High	Low Med High
Non-climate Policies					
Traditional Fuel Use	fast phase-out, driven by policies and economic development	intermediate phase-out, regionally diverse speed	continued realiance on traditional fuels	continued some traditional traditional fuel use among low fuel use income housholds	fast phase-out, driven by development priority
Energy Demand Side					
Lifestyles	modest service demands (less material intensive)	medium service demands (generally material intensive)	medium service demands (material intensive)	low service modest service demands demands	high service demands (very material intensive)
Environmental Awareness	high	medium	low	low high	medium (low for global level/high for local level)
Energy Intensity of Services					
Industry	low	medium	high	high low	medium
Buildings	low	medium	high	medium low/medium	medium
Transportation	low	medium	medium high	low/mediu low	high
General Comments		some regional diversity retained			

Community

1955 35.48955 35.48955 35.48955 35.48955 35.48955 35.48955 35.4895

i i reference d	lata tech_variants (()			4
29 AIM/Enduse[Japan]	JPN_MILES2_INDC80	Japan	Capital Cost[Electricity]Gas[CC CC	U\$\$2010/kWe	1152.593 1
28 AIM/Enduse[Japan]	JPN_MILES2_INDC80	Japan	Capital Cost Electricity Gas CC ACC-High	US\$2010/kWe	1547.214 1
27 AIM/Enduse[Japan]	JPN_MILES2_INDC80	Japan	Capital Cost Electricity Gas CC ACC	U\$\$2010/kWe	1213.256 1
26 AIM/Enduse[Japan]	JPN_MILES2_INDC80	Japan	Capital Cost Electricity Coal PC 2	US\$2010/kWe	2315.909 2
25 AIM/Enduse[Japan]	JPN_MILES2_INDC80	Japan	Capital Cost Electricity Coal PC 1	US\$2010/kWe	2498.782 2
24 AIM/Enduse[Japan]	JPN_MILES2_INDC80	Japan	Capital Cost Electricity Coal IGCC	US\$2010/kWe	2894.886 2
23 AIM/Enduse[Japan]	JPN_MILES2_INDC80	Japan	Capital Cost Electricity Biomass	US\$2010/kWe	3524.209 4
22 AIM/Enduse[Japan]	JPN_MILES2_INDC80	Japan	OM Cost Fixed Electricity Wind Onshore	US\$2010/kWe/yr	59.50295 5
21 AIM/E-India [IIMA]	Reference	India	OM Cost Fixed Electricity Wind Onshore	U\$\$2010/kWe/yr	50.47305 5
20 AIM/E-India [IIMA]	Reference	India	OM Cost Fixed Electricity PV	US\$2010/kWe/yr	105.0605 1
19 AIM/E-India [IIMA]	Reference	India	OM Cost Fixed Electricity Nuclear	US\$2010/kWe/yr	99.52695 9
18 AIM/E-India [IIMA]	Reference	India	OM Cost Fixed Electricity Hydro	US\$2010/kWe/yr	35.48955 3
17 AIM/E-India [IIMA]	Reference	India	OM Cost Fixed Electricity Gas CT	US\$2010/kWe/yr	11.07591 1
16 AIM/E-India [IIMA]	Reference	India	OM Cost Fixed Electricity Gas CC	US\$2010/kWe/yr	13.69637 1
15 AIM/E-India [IIMA]	Reference	India	OM Cost Fixed Electricity CSP	US\$2010/kWe/yr	117.8658 1
14 AIM/E-India [IIMA]	Reference	India	OM Cost Fixed Electricity Coal PC	US\$2010/kWe/yr	44.64246 4
13 AIM/E-India [IIMA]	Reference	India	OM Cost Fixed Electricity Coal IGCC	US\$2010/kWe/yr	44.64246 4
12 AIM/E-India [IIMA]	Reference	India	OM Cost Fixed Electricity Biomass	US\$2010/kWe/yr	22.82728 2
11 AIM/E-India [IIMA]	Reference	India	Capital Cost Electricity Wind Onshore	U\$\$2010/kWe	1693.652 1
10 AIM/E-India [IIMA]	Reference	India	Capital Cost Electricity Wind Offshore	US\$2010/kWe	3103.509 3
9 AIM/E-India [IIMA]	Reference	India	Capital Cost Electricity PV	US\$2010/kWe	4648.405 4
8 AIM/E-India [IIMA]	Reference	India	Capital Cost Electricity Nuclear	US\$2010/kWe	4086.623 4
7 AIM/E-India [IIMA]	Reference	India	Capital Cost Electricity Hydro	US\$2010/kWe	3074.07
6 AIM/E-India [IIMA]	Reference	India	Capital Cost Electricity Gas CT	US\$2010/kWe	526.7987 5
5 AIM/E-India [IIMA]	Reference	India	Capital Cost Electricity Gas CC	US\$2010/kWe	1276.799 1
4 AIM/E-India [IIMA]	Reference	India	Capital Cost Electricity CSP	US\$2010/kWe	7189.384 7
3 AIM/E-India [IIMA]	Reference	India	Capital Cost Electricity Coal IGCC	U\$\$2010/kWe	2263.432 2
2 AIM/E-India [IIMA]	Reference	India	Capital Cost Electricity Biomass	US\$2010/KWe	2289.004 2

- 2020 - 2025 2015 - 2030 2284 664 2284 664 2284 664 2284 664 2284 664 2284 664 2284 664 2284 664 2263,432 2263,432 2263,432 2263,432 2263,432 2263,432 2263,432 2263,432 189.384 7189.384 7189.384 7189.384 7189.384 7189.384 7189.384 7189.384 276,799 1276,799 1276,799 1276,799 1276,799 1276,799 1276,799 1276,799 5.7987 526.7987 526.7987 526.7987 526.7987 526.7987 526.7987 526.798 3074.07 3074.07 3074.07 3074.07 3074.07 3074.07 3074.07 3074.0 86.623 4086.623 4086.623 4086.623 4086.623 4086.623 4086.623 4086.62 48.405 4648.405 4648.405 4648.405 4648.405 4648.405 4648.405 4648.405 103.509 3103.509 3103.509 3103.509 3103.509 3103.509 3103.509 3103.509 93.652 1693.652 1693.652 1693.652 1693.652 1693.652 1693.652 1693.65 .82728 22.82728 22.82728 22.82728 22.82728 22.82728 22.82728 22.82728 64246 44.64246 44.64246 44.64246 44.64246 44.64246 44.64246 44.64246 4.64246 44.64246 44.64246 44.64246 44.64246 44.64246 44.64246 44.64246

Source: Riahi et al. 2017, Krey et al. 2019

Qualitative Assumptions: Demand

Table A.1: Qualitative assumptions for energy demand across SSPs

	SSP	L		SSP 2	•		SSP 3	•		SSP 4			SSP 5	
				Country Income Gro			rouping	5						
SSP Element	Low Me	d High	Low	Med	High	Low	Med	High	Low	Med	High	Low	Med	High
Non-climate Policies														
Traditional Fuel Use	fast phase-out, policies and e developn	driven by conomic nent	interm region	ediate phas ally diverse	e-out, speed	contin tra	ued realian ditional fue	ce on els	continued traditional fuel use	some tra fuel use a income h	aditional mong low iousholds	fast pha devel	se-out, driv opment prie	ven by ority
Energy Demand Side														
Lifestyles	modest service de material inte	emands (less ensive)	mediur (generall	n service de y material in	emands ntensive)	medium (mate	i service de erial intens	mands ive)	low service demands	modest dem	service ands	high serv mate	ice demano erial intensi	ls (very ve)
Environmental Awareness	high			medium			low		low	hi	gh	mediu level/hi	m (low for g	lobal level)
Energy Intensity of Services													Birrorrocar	,
Industry	low			medium			high		high	lo	w		medium	
Buildings	low		1	medium			high		medium	low/m	nedium		medium	
Transportation	low			medium		medium	hi	gh	low/mediu m	lo	w		high	
General Comments			some regio	onal diversit	y retained									

Qualitative Assumptions: Fossil Fuels

Table A.2: Qualitative assumptions for fossil energy supply across SSPs

	SSP1	SSP2	SSP3	SSP4	SSP5
	Sustainability	Middle of the Road	Regional Rivalry	Inequality	Fossil fueled
			Country grouping	Country grouping by income	uevelopment
			Exporter Importer	Low Medium High	
Coal					
Macro-economy	cost driver	neutral	cost reducing	cost driver cost driver neutral	cost reducing
Technological progress	slow	medium	slow fast	medium	very fast
National & environmental policy	very restrictive	supportive	very suportive	supportive supportive restrictive	very supportive
Conv. hydrocarbons					
Macro-economy	neutral	neutral	neutral	cost driver neutral cost reducing	cost reducing
Technological progress	medium	medium	medium	fast	very fast
National & environmental policy	restrictive	supportive	not supportive	supportive supportive restrictive	very supportive
Unconv. hydrocarbons					
Macro-economy	neutral	neutral	neutral	cost driver neutral cost reducing	cost reducing
Technological progress	slow	medium	slow medium	medium	very fast
National & environmental policy	very restrictive	supportive	not very supportive supportive	supportive supportive restrictive	very supportive
General					
Trade barriers	free trade	some barriers	high barriers	barriers	free

Source: Riahi et al. 2017

Qualitative Assumptions: Conversion

Table A.3: Qualitative assumptions for energy conversion technologies SSPs

	SSP 1 SSP 2			·	SSP 3			SSP 4		SSP 5					
						C	ountry Ir	ncome G	rouping	ls					
SSP Element	Low	Med	High	Low	Med	High	Low	Med	High	Low	Med	High	Low	Med	High
Conventional and Unconve	ntional I	Fossil Fu	el Conve	ersion (s	ynfuel a	nd synga	is in pare	nthesis	if differ	ent)					
Technology Development		Med			Med			Low		Low	Med	Med	M	ed (High)	
Social Acceptance		Low			Med			High		High	Low	Low		High	
Commercial Biomass Conv	ersion														
Technology Development		High			Med			Low		High	High	High		Med	
Social Acceptance		Low			Med			High		High	High	High		Med	
Non-bio Renewables Conv	ersion														
Technology Development		High			Med			Low		High	High	High		Med	
Social Acceptance		High			Med			Med		High	High	High		Low	
Nuclear Power															
Technology Development		Med			Med		Low	Low	Med	High	High	High		Med	
Social Acceptance		Low			Med		High	High	High	High	Med	Med		Med	
CCS (under climate policy of	only)														
Technology Development		Med			Med			Med		High	High	High		High	
Social Acceptance		Low			Med			Med		High	Med	Med		Med	

Projecting techno-economic parameters

(using coal power plants as the example)

Source: Krey et al. 2019

Global CO₂ Emissions SSP Reference scenarios and RCPs

SSP/RCP combinations based on reference IAM scenarios

Shared Socio-economic Pathways

Increasing challenges to mitigation

Shared Policy Assumptions (SPAs)

SPAs describe policy assumptions consistent with the widely different challenges to mitigation across the SSP due to, e.g., fragmentation, lack of incritations, inequity, lack of technology, governance, etc..

Two main SPA dimensions

CMIP6/ScenarioMIP

RCP-SSP Matrix including mitigation pathways down to 1.9 W/m²

Source: Riahi et al. 2017, Rogelj et al. 2018

Global CO₂ Emissions

Source: Rogelj et al. (2018)

Harmonization and Downscaling of Emissions and Land-use for ESMs

Source: Gidden et al. (2019) <u>https://doi.org/10.5194/gmd-12-1443-2019</u>, Feng et al. (2020) <u>https://doi.org/10.5194/gmd-13-461-2020</u>, Hurtt et al. (2019) <u>https://doi.org/10.5194/gmd-13-5425-2020</u>

Extension of the CMIP6 Emissions beyond 2100

IASA

Source: Meinshausen et al. (2020), https://doi.org/10.5194/gmd-13-3571-2020

Equity and Fairness in Scenarios

New fair share analysis based on AR6 pathways indicate the need of increasing finance flows

POLICY FORUM

CLIMATE POLICY

Fairness considerations in global mitigation investments

Current mitigation finance flows are inadequate and unfair

Investments in (most) AR6 pathways follow a cost-effectiveness approach (consistent with Article 3 of Paris Agreement).

The pathways, however, do not address the issue of who is financing the regional investments.

New assessment of equitable and fair finance (of the investments of the AR6 pathways) suggest a major increase of finance flows from Annex-1 to non-Annex-1 regions.

Source: Pachauri et al. (2022)

Fairness indicators

Name	Indicator (Unit)	Description	Source
Responsibility R1	1850 CO2FFI (GtCO 2)	Cumulative net anthropogenic fossil fuel and industry (CO2-FFI) emissions from 1850-2019	IPCC WGIII AR6, Ch2
Responsibility R2	1990 CO2FFI (GtCO 2)	Cumulative net anthropogenic fossil fuel and industry (CO2-FFI) emissions from 1990-2019	IPCC WGIII AR6, Ch2
Capability C1	GDP per Capita in 2019 (USD PPP 2017 / capita)	Total gross domestic product (GDP) per capita, for the year 2019	World Bank World Development Indicators
Capability C2	Capital stock per capita in 2019 (USD PPP 2017 / capita)	Total capital stock per capita, for the year 2019	Feenstra, Inklaar, & Timmer (2015)
Needs N1	Decent living standards deprivation in 2015 (average % deprived across all dimensions)	The average share of regional population estimated deprived across all dimensions of the decent living standards for the year 2015	Rao & Min, (2018), Kikstra et al. (2021)
Needs N2	Climate risk in 2030 (% of regional population)	The share of regional population facing acute climate risk in 2030	Byers et al. (2018)

Energy for Poverty Eradication

Decent Living Standards – Material basis for Well-being

	Dimension	Description/ (Minimum) Thresholds	
/	Housing	Safe, durable (permanent), min space (10 m ² /cap)	
Physical	Thermal comfort	AC Use (26°C, 60% Humidity), 1 bedroom, nights only Heating to 18°C	<i>.</i>
Wellheing	Nutrition	Macro- and micronutrients (protein, zinc, iron, calorie	es)
weinseing	Clean ckg	LPG or electricity cook stoves	
	Water	65 l/cap/day, indoor access	Wellhe
	Sanitation	Sewage distribution (urban only)	
	Appliances	Fridge: <200 l; TV; cell phone per adult	
	Health care	\$665 per capita (national)	
	Education	\$1000 -\$1500 per student (national)	
	Mobility Infrastructure	10K p-km motorized; paved roads; public transit 🔸	

DLS Indicators

Dimension	Unit
Food	kCal, Micronutrition
Shelter Comfort	m², Durable (ºC, RH)
Basic appliances	Stove, TV, Fridge
Health/Educ	\$\$
Clothing	Кg
Water/Sanit	Access, m ³
Mobility	P-km

Rao & Min, Soc. Ind. Res., 2018

Decent Living Gaps – Today

100 Decent Living Source: Kikstra et al. 2022

IASA

() No Decent Living

Energy needs for DLE significantly less than lowest scenarios in the literature

Benefits of development, reducing vulnerability to climate extremes

Source: Byers et al. (2018)

SSP Updates

The International Committee on New Integrated Climate Change Assessment Scenarios

Integrated Assessment Modeling Consortium Founded 2007

Towards updated and revised SSPs...

- Basic elements of SSPs were developed about 10 years ago
- New process has started to provide updates along different phases:
 - 1. Numerical updates of existing SSPs ()
 - 2. Update/extend existing narratives
 - 3. Add and/or replace SSPs
 - 4. Revisit and modify framework where necessary

Review process of new SSP quantifications (I)

The updated SSP projections for GDP and population to be reviewed via the IIASA Scenario Explorer infrastructure

Process:

- ⇒ Updated SSP projections available via a public Scenario Explorer available at <u>http://data.ece.iiasa.ac.at/ssp</u>
- ⇒ Feedback possible until Friday, September 8, 2023

⇒ Feedback option only available for registered users

?	Workspaces 🔻	Downloads	Documentation	Lic	ense	About	dh 🔻	C
					Pro Fe Lo	ofile edback gout	G	

Three approaches for reviewing and working with the updated SSP projections

- The interactive Scenario Explorer
 - ⇒ Create a workspace, select scenario and data in a panel
 - ⇒ See the tutorials at <u>https://software.ece.iiasa.ac.at/ixmp-server</u>
- Download the projections data as xlsx files
 - \Rightarrow Go to the "Downloads" tab
- The open-source Python package pyam
 ⇒ Visit <u>https://pyam-iamc.readthedocs.io</u>

Some guidelines for submitting a review

Please provide the following information in a review (via the SSP-Scenario-Explorer feedback form)

- \Rightarrow Your name and institution
- \Rightarrow The type/source of projections (GDP or population)
- ⇒ The specific region/variable/year where your comment applies
 Please be as precise as possible
- ⇒ A detailed description of your comment/remark/question
 - \Rightarrow Projections x for country y after year z should be higher, because ...
 - \Rightarrow Projections x are not consistent with source y ...

Thank you very much for your attention!

This presentation was compiled with support from a EU Climate Dialogues (EUCDs) project.

Funded by the European Union

Volker Krey Research Group Leader Integrated Assessment & Climate Change (IACC) Group Energy, Climate & Environment (ECE) Program International Institute for Applied Systems Analysis (IIASA) Laxenburg, Austria krey@iiasa.ac.at

www.iiasa.ac.at